
The EPS method: A new method for constructing

pseudospectral derivative operators

Kristian Sandberg

Computational Solutions, LLC, 1800 30th St Suite 210B , Boulder, CO 80301

Keith J. Wojciechowski

University of Colorado Denver, 1250 14th St. Suite 600, P.O. Box 173364, Denver, CO
80217-3364

Abstract

We present a stable algorithm for constructing derivative matrices with small
norm for pseudospectral methods. In particular, we construct second deriva-
tive matrices that incorporate Dirichlet or Neumann boundary conditions on
an interval and on the disk. By construction, the norm of these matrices
grows at the optimal rate O(N2) for N -by-N matrices, in contrast to stan-
dard pseudospectral constructions that result in O(N4) growth of the norm.
The smaller norm has a big advantage when using the derivative matrix for
solving time dependent problems such as wave propagation. The construc-
tion can be used with any quadrature, but we have found that by using
quadratures based on Prolate Spheroidal Wave Functions, we can achieve a
near optimal sampling rate close to 2 points per wavelength, even for non-
periodic problems. We provide numerical results for the new construction and
demonstrate that the construction achieves similar or better accuracy than
traditional pseudospectral derivative matrices, while resulting in a norm that
is orders of magnitude smaller than the standard construction. To demon-
strate the advantage of the new construction, we also apply the method for
solving the wave equation in constant and discontinuous media and for solv-
ing PDEs on the unit disk. We also present two compression algorithms for
applying the derivative matrices in O(N logN) operations.

Email addresses: sandberg.kristian@gmail.com (Kristian Sandberg),
keith.wojciechowski@email.ucdenver.edu (Keith J. Wojciechowski)

Preprint submitted to Journal of Computational Physics March 18, 2011

Keywords: Pseudospectral methods, Differentiation, Prolate Spheroidal
Wave Functions, wave propagation, radial Laplacian

1. Numerical Comparisons of Methods

IN LEGENDS, REPLACE Nt WITH DT.

1.1. Single precision

1.1.1. Accuracy

Wave propagation of a sine mode. We first solve the following wave equation
problem

utt = uxx + uyy, (x, y) ∈ (−1, 1)× (−1, 1)

u(x,±1, t) = u(±1, y, t) = 0

u(x, y, 0) = sin(43πx) sin(43πy)

ut(x, y, 0) = 0

. (1)

The equation was discretized in space using three methods: the EPS method,
and 8:th order finite difference scheme, and a standard pseudo-spectral deriva-
tive matrix with respect to Chebyshev-Lobatto nodes [REF]. To propagate
the equation in time, we wrote the equation as a first order system in time
of the form [

u
v

]
t

=

[
0 I
∆ 0

] [
u
v

]
where ∆ denotes the Laplacian operator and I denotes the identity operator.
We then used the Tal-Ezer method [REF] which effectively computes etL

applied to a vector recursively by repeated application of L to a vector,
where L is the operator

L =

[
0 I
∆ 0

]
.

We solved this equation in the interval t ∈ [0, T] where T was chosen
as the time corresponding to propagating the wavefield a distance of 100
spatial wavelengths. We define one spatial wavelength as the distance of one
wavelength of our initial condition, which is 2/43 in this case. For our first
experiment, we adjusted the spatial and temporal sampling of the different
method to all give roughly the same accuracy, which in our first experiment
is roughly 4-5 digits. We measured the max error at each time step of the

2

Figure 1: Accuracy of solving equation (1) in single precision using three different methods.
Nx,y and Nt denotes the number of spatial and temporal samples needed to achieve the
accuracy.

propagation, and plot the error for the different methods as a function of
propagated time in Figure 1. In Section 1.1.2 and Section 1.1.3 we will
compare and analyze the memory requirements and computational costs for
the methods.

Wave propagation of a pulse. As a second test example, we solve the 1D
wave equation problem

utt = uxx, x ∈ (−1, 1)

u(x,±1, t) = 0

u(x, y, 0) = f(x)

ut(x, y, 0) = 0

, (2)

where the initial pulse f(x) = e−1000x2
(”Gaussian pulse”) or

f(x) =

{
1+cos(πx

0.05
)

2
, |x| ≤ 0.05

0, |x| > 0.05
.

3

(”Cosine Bell”). The Gaussian pulse models a sharp, infinitely differentiable
pulse, whereas the Cosine Bell models a sharp, but only a once differentiable
pulse.

The equation was discretized in space using three methods: the EPS
method, and 8:th order finite difference scheme, and a standard pseudo-
spectral derivative matrix with respect to Chebyshev-Lobatto nodes [REF].
To propagate the equation in time, we used the Tal-Ezer method as described
in the previous example.

We solved this equation in the interval t ∈ [0, T] where T was chosen
as 400 seconds, which corresponds to the time it takes to propagate the
pulse across the interval back and forth 100 times. We plot the error for the
different methods as a function of propagated time in Figure 2. In Section

Figure 2: Accuracy of solving equation (2) with a Gaussian pulse (left) and Cosine Bell
(right) in single precision using three different methods. Nx,y and Nt denotes the number
of spatial and temporal samples needed to achieve the accuracy.

1.1.2 and Section 1.1.3 we will compare and analyze the memory requirements
and computational costs for the methods.

1.1.2. Spatial and temporal sampling

In this section we analyze and compare the spatial sampling and the time
steps needed to achieve the accuracy in Section 1.1.1. By trying to reach
similar accuracies for all three methods, the spatial sampling will give us an
estimate how much memory is needed to achieve a given accuracies. To com-
pare the necessary memory requirements, we computed the memory to store
one wavefield u(x) in one, two, and three dimensions. Note that depending

4

1D 2D 3D

EPS 512 B 262 kB 134MB
PS (standard) 768 B 590 kB 453 MB
FD8 2560 B 6.55 MB 16.8 GB

Table 1: Memory requirement (in Bytes) per wave field (single precision).

1D 2D 3D

EPS 1 1 1
PS (standard) 1.5 2.25 3.38
FD8 5 25 125

Table 2: Relative memory requirement per wave field (single precision)

on the time stepping scheme being used, one needs to store several such wave
fields. In our experiments, we used the same time stepping methods for all
methods, which means that the net memory requirements are proportional
to the memory requirement for storing one wave field.

In Table 1 we list the memory requirement to achieve the accuracy for the
type of examples in Section 1.1.1. The memory requirements were computed
by the formula 4Nd

x , where the factor 4 comes from considering single preci-
sion, and d denotes the dimensionality. The number of spatial samples Nx

for the above experiments were 128, 192, and 640 for the EPS method, the
standard PS method, and 8:th order finite difference scheme, respectively. In
Table 2 we have tabulated the relative memory requirements for easy com-
parisons of the methods. In Table 3 we list the relative time step requirement
to achieve the accuracy for the type of examples in Section 1.1.1.

EPS 1
FD8 0.5
PS (standard) 0.04

Table 3: Relative time step (single precision)

5

1.1.3. Computational cost

Although the finite difference scheme requires more memory than the
other methods, a finite difference application is typically considerably faster
than the other method when comparing identical sizes. In order to obtain
a fair comparison between the methods, we will in this section compare the
computational speeds between the methods by first measuring the CPU time
for evaluating the second derivative for the different methods for sampling
rates that gives roughly the same accuracy.

The timings were performed as follows: For the EPS and the PS method,
we measured the CPU time for applying the second derivative operator as
dense matrix-vector applications. It should be noted that both of these
methods may benefit from using any of the fast application methods discussed
in Section ??. However, speed gains from such fast methods are highly
dependent on computer architecture and implementation. In general, such
fast application methods only win over dense matrix-vector multiplication
for relatively large sizes.

For the 8:th order finite difference method we measured the CPU time for
applying the second derivative using a 9-tap finite difference stencil, using
a cache-friendly implementation. All tests were done on an iMac with a
2.8 GHz Intel Core i5 Nehalem processor with 8 MB Level 3 cache and 4
GB of 1333 MHz DDR3 RAM. The code was implemented in Fortran 2003
and compiled with Intel’s Fortran compiler XE 12.0 for OS X, using the
MKL library routines for the matrix-vector multiplications. In cases where
the CPU time was too short to give reliable timing estimates from a single
application of the spatial operator, the result was averaged over as many
applications that were needed to reliably measure the CPU time. All timings
were done single threaded.

In Table 4 we have listed the CPU time measured for each method. For
2D and 3D data, one has to apply the spatial operators on both data that
is aligned in memory, and data that is not aligned in memory. We therefore
measure the time for these cases seprately in Table 4.

Using our timings for applying the spatial operator, we now compute the
total computational time according to the following formula:

Ttotal = NtNitTalign(Nx), (1D)

Ttotal = NtNit(Talign(Nx)Ny + Tno−align(Ny)Nx), (2D)

Ttotal = NtNit(Talign(Nx)NyNz + Tno−align(Ny)NxNz + Tno−align(Nz)NxNy), (3D)

(3)

6

Method Aligned data Not-aligned data

EPS (dense) 2.6E-06 s 3.2E-06 s
PS (standard, dense application) 5.2E-06 s 6.3E-06 s
PS (standard, FFT application) 8.7E-07 s 1.7E-06 s
FD8 4.7E-06 s 7.4E-06

Table 4: Cost for one spatial operator application (single precision) to achieve similar
accuracy for three different methods.

Method 1D 2D 3D

EPS 0.021 s 5.9 s 1200 s
PS (standard, dense) 1.0 s 440 s 1.3E+05 s
PS (standard, FFT) 0.17 s 99 s 3.1E+04 s
FD8 0.075 s 120 1.3E+05 s

Table 5: Total computational cost to achieve 4-5 digits accuracy for the type of problem
in Section 1.1.1.

whereNt denotes the total number of time steps, Nx,y,z the number of samples
in the x-,y-, and z-directions, Nit denotes the number iterations used for the
Tal-Ezer recursion, Talign(N) the CPU time for applying a spatial second
derivative on N data samples aligned in memory, and Tno−align(N) the CPU
time for applying a spatial second derivative on N data samples not aligned
in memory.

In our case, we will always use Nx = Ny = Nz. For all method, we
used Nit = 10. Applying this timing formula using the required sampling to
achieve the accuracy in Section 1.1.1, we list the total CPU time in Table 5.

1.2. Double precision

1.2.1. Accuracy

In this section we repeat the experiments from Section 1.1.1, but now
target a higher accuracy using double precision computations.

Wave propagation of a sine mode. In Figure 3 we plot the accuracy from solv-
ing (1). Although we tried to achieve the same accuracy for all three methods
by increasing the sampling, the 8:th order finite difference scheme is unable

7

to achieve as high accuracy as the spectral methods. This, we believe, is
mainly due to numerical dispersion, which even high order finite difference
schemes handle poorly (See [INSERT REF TO FORNBERG GRAPHS] for
an illustration of this). Even the standard pseudo-spectral method is un-
able to achieve the high accuracy of the EPS method. REDO THIS ONE

Figure 3: Accuracy of solving equation (1) in double precision using three different meth-
ods. Nx,y and Nt denotes the number of spatial and temporal samples needed to achieve
the accuracy.

BUT USE 256 (OR MORE) NODES INSTEAD. ADD SAMPLING TO THE
FIGURE LEGEND.

Wave propagation of a pulse. In Figure 4 we plot the accuracy from solving
(2) targeting 12-13 digits accuracy using double precision.

1.2.2. Spatial and temporal sampling

In Table 6 we list the memory requirement to achieve the accuracy for the
type of examples in Section 1.2.1. The memory requirements were computed
by the formula 8Nd

x , where the factor 8 comes from considering double pre-
cision, and d denotes the dimensionality. The number of spatial samples Nx

8

Figure 4: Accuracy of solving equation (2) with a Gaussian pulse (left) and Cosine Bell
(right) in double precision using three different methods. Nx,y and Nt denotes the number
of spatial and temporal samples needed to achieve the accuracy.

1D 2D 3D

EPS 2.0 kB 4.1 MB 8.6 GB
FD8 20 kB 420 MB 8.6 TB
PS (standard) 3.1 KB 9.4 MB 29 GB

Table 6: Memory requirement per wave field (double precision)

for the above experiments were 256, 384, and 2560 for the EPS method, the
standard PS method, and 8:th order finite difference scheme, respectively.
In Table 8 we list the relative time step requirement to achieve the accuracy
for the type of examples in Section 1.2.1.

1.2.3. Computational cost

In this section we use the same methodology as in Section 1.1.3 to compare
the computational times for the different methods. We first list the CPU time
in Table 9 for applying the spatial operator in one dimension for data aligned
and not aligned in memory using the sampling rates 256, 384, and 2560 for
the EPS method, the standard PS method, and 8:th order finite difference
scheme, respectively. We next use (3) to derive the computational times
for the different methods. For all method, we used Nit = 16. Applying
this timing formula using the required sampling to achieve the accuracy in
Section 1.2.1, we list the total CPU time in Table 10.

9

1D 2D 3D

EPS 1 1 1
FD8 10 100 1000
PS (standard) 1.5 2.3 3.4

Table 7: Relative memory requirement per wave field (double precision)

EPS 1
FD8 0.125
PS (standard) 0.02

Table 8: Relative time step (double precision)

Method Aligned data Not-aligned data

EPS 2.0E-05 s 2.3E-05 s
PS (standard, dense) 4.5E-05 s 5.2E-05 s
PS (standard, FFT) 2.9E-06 s 6.5E-06 s
FD8 3.1E-05 s 1.1E-04

Table 9: Cost for one spatial operator application (double precision) to achieve similar
accuracy for three different methods..

Method 1D 2D 3D

EPS 0.26 s 141 s 5.5E+04 s
PS (standard, dense) 29 s 2.4E+04 s 1.4E+07 s
PS (standard, FFT) 1.9 s 2.3E+03 s 1.5E+06 s
FD8 3.2 s 3.7E+04 s N/A

Table 10: Total computational cost to achieve 12-13 digits accuracy for the type of problem
in Section 1.2.1. Note that we do not list the cost for computing the 3D solution for the
8:th order finite difference scheme, as this would require more RAM than is currently
available on a single machine.

10

1.3. Qualitative comparison in discontiuous media

We finally show compare the EPS method for wave propagation in dis-
contiuous media by solving the equation

utt = c(x, y)∆u, x ∈ (−1, 1)

u(x,±1, t) = u(±1, y, t) = 0

u(x, y, 0) = e−1000((x+ 1
2
)2+(y+ 1

2
)2)

ut(x, y, 0) = 0

, (4)

where the velocity is given by

c(x, y) =

{
2, (x, y) ∈ [0, 0.5]× [0, 0.5]
1, (x, y) 6∈ [0, 0.5]× [0, 0.5]

which models a sharp pulse centered initially in the upper right corner, and
propagating through a domain with a square region in the lower left corner
with a higher velocity. We solve this equation using the method from Section
1.1.1.

We show the resulting wave field using the EPS method with 128 APSWF
nodes in each dimension after t = 0.84s in Figure 6. In Figure ?? we compare
a slice of the wavefield with that generated by the PS method using 128
Chebyshev nodes in each dimension, and a time step 1/25:th of the time step
used by the EPS method. The slice was chosen along the diagonal from the
upper left to the lower right, and cuts accross one of the corner discontinuities
at the center of the domain. We notice that despite the significantly larger
time step used by the EPS method, the EPS method produces a significantly
cleaner result.

11

Figure 5: The resulting wave field after t = 0.84 s from solving Equation (4) using the
EPS method with 128 APSWF nodes in each dimension.

.

Figure 6: Comparison of the resulting wave field after t = 0.84 s from solving Equation
(4) using the EPS method with 128 APSWF nodes in each dimension (left) and using the
PS method with 128 Chebyshev nodes in each dimension (right).

.

12

