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Abstract. We present a new method for enhancing the contrast of
curve-like structures in images, with emphasis on Transmission Electron
Microscopy tomograms of biological cells. The method is based on the
Orientation Field Transform, and we introduce new techniques for gen-
erating directions and weights of the orientation field. The new method
for generating the orientation field focuses on analyzing local asymme-
tries in the image. We demonstrate that analyzing geometric attributes
such as orientations and symmetries results in a robust method that is
relatively insensitive to poor and non-uniform contrast.

1 Introduction

Transmission Electron Microscopy (TEM) is a powerful tool to better understand
structure and functionality of biological cells [1]. By imaging a specimen from
multiple angles, tomographic reconstructions (tomograms) provide 3D images of
cellular structures. In order to build easily viewable models of cellular structures,
structures of interest are often segmented and rendered as surfaces.

Automating the segmentation process has proved difficult, and in most cases
the user has to rely on manual segmentation tools such as IMOD [2]. Building
3D models using manual segmentation tools is often a slow and tedious process,
sometimes requiring months of manual identification of cellular structures.

Due to the anisotropic resolution of TEM tomograms of cells [3], segmenting
a 3D tomogram is often done slice-wise in the plane of highest resolution. In
such slices, the cross section of structures often appear as curve-like structures.

In this paper we consider the problem of enhancing the contrast of curve-
like structures in slices of 3D tomograms. Once the contrast of such structures
has been enhanced, one can use thresholding and thinning operations to extract
contours. This paper will focus on the contrast enhancement step while referring
to the extensive literature for the thresholding/thinning problem (see [4] and
references therein).

More specifically, we consider the following problem: Given a 2D image and a
scale parameter r, generate an image where the contrast of curve-like structures
of thickness ∼r are enhanced, while the contrast of non-curve-like structures are
decreased.

A major obstacle for adaptation of automated segmentation algorithms for
cell biology is ¨the curse of parametrization¨. Many segmentation algorithms
rely on several parameters to be tuned in order to obtain satisfactory results.
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Tuning such parameters can be both time consuming and frustrating, especially
in cases where the parameters lack intuitive meaning. We therefore consider
minimizing the number of parameters of the segmentation process a priority.

Popular automated segmentation methods include Active Contours [5], Level
Set methods [6], and the Watershed Transform [7]. Although these methods
quite successfully detect compartment-like structures, they are less suitable for
detecting curve-like objects [8]. In recent years there has also been an increasing
interest in so-called eigenvector techniques [9],[10], which are flexible and can be
tuned to detect curve-like structures.

Despite significant research in automatic segmentation techniques, few meth-
ods have proved useful for TEM tomograms of cells since these often suffer from
low and non-uniform contrast, low signal to noise ratio, and also the presence of
interfering structures [11],[8]. In this paper, interfering structures refer to high
contrast structures of different shape attributes than the ones the segmentation
algorithm targets (see Figure 1).

Fig. 1. a) A synthetically generated example where the goal is to detect the horizontal
line and the two vertical lines. The dots are considered interfering structures. b) Slice
of a tomogram of a Trypanosome. The structures inside the rectangle are examples of
what we will refer to as interfering structures.

To address the problem of low and non-uniform contrast while enhancing
curve-like structures, orientation fields have proved useful, particularly for finger
print segmentation and matching [12], and for segmenting slices of tomograms of
cells [11]. The orientation field is an assignment of a weighted line segment to each
pixel in the image (see Figure 2). Each orientation has two attributes: an angle
(ranging between 0 and 180 degrees), and a weight indicating the importance
of the orientation. The orientation field can show remarkable uniformity even in
cases where the contrast is highly non-uniform (see Figure 3 in [11]).

When using orientation fields for enhancing curve-like objects there are two
main questions that have to be addressed: 1) How to generate the orientation
field, and 2) how to detect curve-like objects in the orientation field. In this paper,
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we will focus on the first question and use the Orientation Field Transform (OFT)
[11] to detect curve-like objects once the orientation field has been generated.

A common method for generating the orientation field is to compute eigenvec-
tors of the structure tensor [13], or some type of gradient [14], often combined
with denoising. In 3D data sets, convolution-based edge detection methods have
been described in, e.g., [15] and [16]. In [11], the authors used an approach
based on line integration rather than differentiation, which turns out to be rela-
tively stable for the challenging properties of TEM tomograms. However, the ap-
proach in [11] has several shortcomings, particularly in the presence of interfering
structures.

In this paper, we develop new techniques for generating more robust weights
for the orientation field that will properly reflect the reliability of the orientation.
We also develop a new robust method for generating orientation directions. These
improvements will lead to a robust method for enhancing curve-like objects,
while leaving only one parameter, the scale r, for the user to adjust.

Although we will focus on segmentation of curve-like biological structures of
TEM images, we note that our approach is general and can be used to enhance
curve-like objects in any image. However, we have found TEM tomograms of
cells to provide particularly challenging test data sets and therefore an excellent
testing environment for image enhancement algorithms.

We review the definition of orientation fields and the OFT in Section 2 and
also illustrate where the method for generating the orientation field in [11] fails.
In Section 3 we present new techniques for generating a more robust orientation
field, and enhance curve-like structures of a synthetic example and a slice from
a real TEM tomogram in Section 4. We conclude the paper with a discussion of
our approach and mention some of its limitations and future research.

2 Review of Orientation Fields and the OFT

Throughout this paper, we let I(x) denote the image to be processed such that
I(x) gives the (gray scale) intensity at location x = (x, y). We will assume that
targeted structures have a locally higher intensity than the background.

We define an orientation F as the tuple {w, θ} where θ is a direction that
ranges between 0 and 180◦ and w is a positive weight indicating the importance
of the direction. An orientation field F(x) = {w(x), θ(x)} is the assignment of
an orientation to each location in the image. We can illustrate the orientation
field of an image by drawing a line segment at each pixel location, and vary its
intensity to indicate the weights (see Figure 2).

To generate the orientation field, we consider the line integral operator

R[I](x, y, θ) ≡
∫ r

2

− r
2

I(x + s cos θ, y + s sin θ) ds, (1)

where r is a scale parameter. This line integral computes the total intensity along
a straight line of length r and direction θ centered at pixel (x, y).
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Fig. 2. The orientation field (right) of the image (left)

In [11], the orientation field was generated by

F(x, y) =
{

max
θk

R[I](x, y, θk), argmax
θk

R[I](x, y, θk)
}

(2)

for a sequence of equally spaced angles {θk}Nθ
k=1 in the range [0, π), where r was

chosen as approximately two times the width of a typical curve-like structure in
the image.

This definition has the advantage of being relatively insensitive to noise com-
pared to gradient based methods for orientation field generation [17],[8]. How-
ever, it has some disadvantages that we will now discuss.

First, the orientation field near a structure tends to align with the structure,
rather than perpendicularly to the structure, see Figure 3a and b. This hap-
pens since the integral along a line that cuts a structure diagonally will give a
larger response than an integral along a line that cuts a structure perpendicu-
larly. However, we shall see below that when using the OFT to detect curve-like
structures in the orientation field, it is crucial that orientations align parallel to
the curve for locations inside the curve, and align perpendicular to the curve for
locations near but outside curves.

Secondly, the weights of the orientation field may be large even when located at
or near a point-like structure, as illustrated in Figure 3d. Ideally, the orientation
weights should be close to zero in such case, since these orientations are not
associated with a curve-like structure.

In order to to detect curve-like structures in the orientation field, we will
use the Orientation Field Transform (OFT). To this end, we first define the
alignment integral operator Ω of the orientation field F(x, y) as

Ω[F ](x, y, α) = (3)
∫ r

2

− r
2

w(x + s cosα, y + s sinα) cos (2(θ(x + s cosα, y + s sin α) − α)) ds
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Fig. 3. a) A synthetically generated line-like structure. b) Orientation field for the
structure in a) generated by the method in [11]. c) A synthetically generated point-
like structure. d) Density plot of the orientation field weights for the structure in c)
generated by the method in [11].

where α is an angle between 0 and 180◦. This operator integrates the weights
of the orientation field along straight lines through each pixel, multiplied by the
alignment factor cos(2(θ−α)). This alignment factor attains its maximum value
1 when θ and α are equal (parallel alignment), and attains it minimum value −1
when θ and α differ by 90◦ (perpendicular alignment).

To compute the OFT, we first search for the direction in which we have
the strongest alignment (parallel or perpendicular), followed by evaluating the
alignment integral Ω along the direction of strongest alignment. Formally, we
define the OFT, O, of the orientation field F(x) = {w(x), ρ(x)} as

O[F ](x) = Ω[F ](x, θ̃), θ̃ = argmax
αk

|Ω[F ](x, αk)| .

We note that this operator generates a large negative response near a curve where
the orientations (ideally) are aligned perpendicular to the curve, and large posi-
tive response inside a curve where the orientations (ideally) are aligned parallel
along the curve. Since negative response indicates the exterior of a curve, we can
therefore set O[F ](x) to zero at locations where the OFT response is negative.
For examples and details, see [11].
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3 A New Method for Generating Orientation Fields

In this section we address the shortcomings listed in Section 2 above. To this
end, it will be convenient to introduce operators W and Θ, which extract the
weight and direction from an orientation, that is, Θ(F) = θ and W (F) = w.

3.1 Stable Generation of Orientation Field Direction

To generate directions that point perpendicular to a nearby curve, we introduce
the notion of an ¨average¨ orientation. In order to compute the average of a
collection of orientations, we need an addition algorithm for orientations that is
associative (order independent). One way to do this, is to map each orientation
to a vector in 2D represented in polar coordinates by doubling the direction angle
such that {w, θ} is mapped to {w, 2θ}. This mapping provides an invertible map-
ping between orientations and vectors in the plane. Since vector addition in the
plane is associative, we can use the following algorithm for adding orientations
{w1, θ1} and {w2, θ2}:

1. Map orientations to 2D vectors:
{w1, θ1} $→ {w1, 2θ1} ≡ v1 and {w2, θ2} $→ {w2, 2θ2} ≡ v2

2. Compute vsum = v1 +v2 using the usual rules for vector addition and write
the vector vsum in its polar representation {wsum, θsum}.

3. Map the vector vsum to an orientation: {wsum, θsum} $→ {wsum, θsum/2}

In particular, we see that two orientations with directions 90◦ apart and identical
weights, add to a zero orientation (orientation with w = 0). For an alternative
averaging algorithm (which can be generalized to higher dimensions), see [17].

Using the rules for orientation addition, we generate the direction of the ori-
entation field of the image I as

θ(x, y) = Θ

(
Nθ∑

k=1

{R[I](x, y, θk), θk}
)

(4)

where R is the line integral operator defined in (1) above. This definition differs
to the one used in [11], by averaging over the response in different directions,
rather than looking for the direction of maximum response. This means that
outside a curve, the response will average (because of symmetry), to generate a
net orientation perpendicular to the edge (see Figure 4).

3.2 Generation of Orientation Weights

In order to address the problems with orientation weights discussed in Section
2, we will consider two attributes that we refer to as reliability and asymmetry
alignment. We will then use a simple fuzzy system to combine these two at-
tributes to a single weight. One could add even more attributes, but we limit
ourselves to only two since these two attributes are fairly general and should
therefore work for a broad class of images.
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Fig. 4. The orientation field generated by (4) for the structure in Figure 3a

The Reliability Measure. The reliability measure, which we denote as wr(x),
is given by extracting the weight from the sum computed for generating the
direction in Section 3.1, that is,

wr(x) = W

(
Nθ∑

k=1

{R[I](x, θk), θk}
)

. (5)

This expression is best understood by considering the response at the center
of a radially symmetric point, in which case the response of the line integral
R[I](x, θ) is the same in all directions. By symmetry, the sum over orientations
will therefore sum to the zero orientation, which we illustrate in Figure 5a.

The Asymmetry Alignment Measure. To prevent large orientation weights
nearby point-like objects we observe that the absolute value of the 2D Fourier
transform of an image of a radially symmetric point is symmetric, whereas the 2D
Fourier transform of a line is highly asymmetric. By computing a local Fourier
transform of an area centered at each pixel and analyzing the asymmetry of
the resulting Fourier transformed data, we can measure ¨how curve-like¨ the
neighborhood is.

To formalize these ideas, we first define the following data set

Ĩ(x, y, ξ, η) =

∣∣∣∣∣

∫ x+ r
2

x− r
2

∫ y+ r
2

y− r
2

I(x′, y′)e−2πi(x′ξ+y′η) dx′ dy′

∣∣∣∣∣ .

This operator computes the absolute value of the 2D Fourier transform of an
r-by-r neighborhood of each pixel (x, y).

The asymmetry alignment measure wa is defined by measuring the asymmetry
of Ĩ with respect to the (ξ, η) variables, and measuring the alignment of this
asymmetry with the orientation direction:

wa(x, y) =
Nθ∑

k=1

(∫ r
2

− r
2

Ĩ(x, y, s cosφk, s sinφk) ds

)
cos(2(φk − θ(x, y) − π

2
)) (6)

where {φk}Nθ
k=1 is a set of equally spaced angles in the interval [0, π).1

1 The shift π
2 is needed since the 2D Fourier transform of a curve orientated at θ

degrees in the space domain, will be oriented at θ− π
2 degrees in the Fourier domain.
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The purpose of this asymmetry measure is twofold. First, it measures the
¨strength¨ of the asymmetry.2 Secondly, it measures the alignment of the asym-
metry with the orientation direction computed in (4).

As an example, consider the value of wa(x) at a line structure with orientation
θ. The line integral

∫ r
2
− r

2
Ĩ(x, s cosφk, s sin φk) ds attains it maximum value for

φk = θ − π/2, for which the alignment factor cos(2(φk − θ − π
2 )) attains it

maximum value. Hence, wa will be large and positive at a line structure.
As a second example consider the response at (or near) a radially symmetric

point. Since the 2D Fourier transform of a radially symmetric dot is radially
symmetric, all terms in (6) cancel out. Hence, wa is zero at or near a point
structure.

As a final example, consider the response outside a straight line. Since we
are measuring the absolute value of the asymmetry in the Fourier domain, the
measure is independent of spatial shifts of the structure. Hence, the response
of

∫ r
2
− r

2
Ĩ(x, s cosφk, s sin φk) ds attains it maximum value for the same φk as if

located at the line structure. However, the orientation θ near but outside a line
structure will be perpendicular to the line structure (Figure 4). Hence, φk = θk,
for which the alignment factor cos(2(φk − θ− π

2 )) attains it minimum value (-1).
Hence, wa will be negative outside a line structure.3

In Figure 5b we display the weights wa for the image in Figure 1a.

Combining the Reliability and the Asymmetry Alignment Measures.
In order for a pixel to be associated with a curve-like object, we require large re-
liability response (wr) and large asymmetry alignment response (wa). Although
there are many ways of combining these measures into a single weight, we have
chosen the following criteria for simplicity: We first rescale wr(x) and wa(x)
to the interval [0, 1] by wr(x) = wr(x)−minx wr(x)

maxx wr(x)−minx wr(x) and similarly for wa. We
then define w(x) = wa(x)wr(x) (element-wise multiplication when the weights
are represented as matrices), which can be thought of as a simple fuzzy system
[18]. We choose this criteria because of its simplicity, and since it does not intro-
duce any additional parameters. In Figure 5c we display the weights w for the
image in Figure 1a.

3.3 Summary of the Algorithm

We summarize the curve enhancement algorithm as follows:4

2 One can obtain a more intensity independent measure by first setting Ĩ(x, y, 0, 0) = 0,
that is setting the DC component (or zero frequency) to zero, before computing the
sum in (6).

3 Since negative response indicates the exterior of a curve, we can therefore set wa(x)
to zero at locations where the response of (6) is negative.

4 Note that all integrals are assumed to be approximated by sums.
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1. Generate the orientation field:
(a) For each location x:

i. Generate the directions θ(x) by using (4).
ii. Generate the weights wr(x) by using (5).
iii. Generate the weights wa(x) by using (6). If wa(x) < 0, set wa(x) = 0.

(b) Rescale wr(x) and wa(x) to [0, 1].
(c) For each location x: Compute w(x) = wr(x)wa(x).

2. Compute the OFT. For each location x:
(a) Compute the OFT by using (3).
(b) If O[I](x) < 0, set O[I](x) = 0.

4 Results

We first verify the consistency of our algorithm by enhancing the line structures
in Figure 1a. Although this is obviously a synthetic example, it provides valuable
verification of our algorithm’s ability to handle noise, and also of its ability
to enhance the weak line-like structures while decreasing the contrast of the
strong point-like structures as shown in Figure 5d. We used a scale parameter r
corresponding to approximately 1.5 times the thickness of the line-like structures.

Fig. 5. Illustration of the orientation field weights for the image in Figure 1a displayed
as density plots. a) The weights wr. b) The weights wa. c) The final weights. d) Result
of applying the algorithm in Section 3.3 to the image in Figure 1a.
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Fig. 6. Enhancement of a tomogram slice of a Trypanosome. a) Original image b)
Result using the orientation field generated by the algorithm [11]. c) Result using the
algorithm in Section 3.3. d) Closeup of the original image. e) Closeup of the result in
b). f) Closeup of the result in c).

Wenext apply our algorithmto a slice froma realTEMtomogram5 (Figure 6). In
the left column we show the original image, in the center column the resultwhen us-
ing the orientation field generated by the algorithm in [11], and in the right column
the result of using our algorithm. We used a scale parameter r that corresponds to
approximately 1.5 times the thickness of a typical membrane.

5 Discussion

Whereas many traditional segmentation methods focus on detecting edges and
local correlation in texture, attributes which are known to be sensitive to nonuni-
form contrast and noise, the OFT detects correlations in geometrical attributes.
However, in order for the OFT to be robust, it is essential for the orientation
field to be based on attributes that are insensitive to contrast variations.

The method for generating the orientation field in [11] is relatively insensitive
to noise, but still highly dependent on intensity and therefore sensitive to the
presence of strong point-like structures. This problem can be partially remedied
by locally smoothing the orientation field, thresholding, and allowing different
5 Tomogram of Trypanosome, courtesy of Mary Morphew, the Boulder Laboratory for

3D Electron Microscopy of Cells, University of Colorado at Boulder.
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scale parameters r1 and r2 to be used in (2) and (3), respectively. However, this
requires more parameters to be tuned.

The methodology in this paper generates a significantly less contrast depen-
dent orientation field by focusing more on local asymmetries than local intensi-
ties, and only requires one parameter to be set.

In order for a segmentation algorithms to be used routinely in a laboratory,
experience shows that it is essential to minimize the number of parameters for the
user to tune, and ensure that existing parameters have intuitive interpretations.
The scale parameter used for the algorithm in this paper is easy to estimate as
it is directly related to the thickness of a target structure.

We also point out that the suggested algorithm can be extended with more
parameters. For example, one can introduce more attributes for generating the
weights, and combine these using fuzzy logic, possibly within a neural network
framework to train the fuzzy system.

In order to extend the current algorithmto detect objects with varying thickness
and curvature, one should introduce a multiscale methodology by simultaneously
process the data for a range of scale parameters r combined with some criteria
on how to locally select r. We also note that the OFT currently uses a family of
straight lines of fixed length to search for correlation in the orientation field. A
more sophisticated version can use a family of curves of varying curvature as well,
which should improve the accuracy for finding structures with large curvatures.

Finally, we plan on extending the current work to detect curves and planes in
3D data sets.

6 Conclusion

We have refined an earlier suggested method for enhancing the contrast of curve-
like structures in TEM tomograms. The method is based on the Orientation
Field Transform, but uses a more robust technique to generate the orientation
field of an image compared to earlier suggested methods. The resulting method is
stable both with respect to noise and presence of high contrast point-like objects.
Furthermore, the algorithm only requires one parameter to be set by the user,
and is therefore easy to use.
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